2 research outputs found

    Automatic regenerative simulation via non-reversible simulated tempering

    Full text link
    Simulated Tempering (ST) is an MCMC algorithm for complex target distributions that operates on a path between the target and a more amenable reference distribution. Crucially, if the reference enables i.i.d. sampling, ST is regenerative and can be parallelized across independent tours. However, the difficulty of tuning ST has hindered its widespread adoption. In this work, we develop a simple nonreversible ST (NRST) algorithm, a general theoretical analysis of ST, and an automated tuning procedure for ST. A core contribution that arises from the analysis is a novel performance metric -- Tour Effectiveness (TE) -- that controls the asymptotic variance of estimates from ST for bounded test functions. We use the TE to show that NRST dominates its reversible counterpart. We then develop an automated tuning procedure for NRST algorithms that targets the TE while minimizing computational cost. This procedure enables straightforward integration of NRST into existing probabilistic programming languages. We provide extensive experimental evidence that our tuning scheme improves the performance and robustness of NRST algorithms on a diverse set of probabilistic models

    autoMALA: Locally adaptive Metropolis-adjusted Langevin algorithm

    Full text link
    Selecting the step size for the Metropolis-adjusted Langevin algorithm (MALA) is necessary in order to obtain satisfactory performance. However, finding an adequate step size for an arbitrary target distribution can be a difficult task and even the best step size can perform poorly in specific regions of the space when the target distribution is sufficiently complex. To resolve this issue we introduce autoMALA, a new Markov chain Monte Carlo algorithm based on MALA that automatically sets its step size at each iteration based on the local geometry of the target distribution. We prove that autoMALA has the correct invariant distribution, despite continual automatic adjustments of the step size. Our experiments demonstrate that autoMALA is competitive with related state-of-the-art MCMC methods, in terms of the number of log density evaluations per effective sample, and it outperforms state-of-the-art samplers on targets with varying geometries. Furthermore, we find that autoMALA tends to find step sizes comparable to optimally-tuned MALA when a fixed step size suffices for the whole domain.Comment: Fix Fig.
    corecore